SoulSync creates personalized AI companions that mirror your partner's personality, voice, and communication style using cutting-edge transformer models.
Secure, scalable infrastructure for personalized AI companionship
vLLM serving with tensor parallelism for low-latency responses
Granular permission controls with immutable audit logs
Nightly fine-tuning with LoRA adapters for personality evolution
Specialized transformer models for emotional presence and personality mirroring
Fine-tuned Mistral-7B with LoRA adapters for personalized responses
class PersonalityMirror(nn.Module): def __init__(self, base_model, lora_weights): super().__init__() self.base_model = AutoModelForCausalLM.from_pretrained(base_model) self.lora = PeftModel.from_pretrained(self.base_model, lora_weights) def forward(self, input_ids, attention_mask): outputs = self.lora(input_ids, attention_mask=attention_mask) return outputs.logits def generate(self, input_ids, **kwargs): # Apply personality-specific generation parameters kwargs.setdefault('temperature', 0.7) kwargs.setdefault('top_p', 0.9) return self.lora.generate(input_ids, **kwargs)
FastSpeech2 + HiFi-GAN with speaker embeddings
def clone_voice(text, speaker_embedding): # Text normalization and phonemization cleaned_text = clean_text(text) phonemes = phonemize(cleaned_text) # Generate mel-spectrogram with FastSpeech2 mel = fastspeech2(phonemes, speaker_embedding) # Convert to waveform with HiFi-GAN audio = hifigan(mel) return audio def extract_speaker_embedding(audio_sample): # Process 30s of audio to create speaker embedding preprocessed = preprocess_audio(audio_sample) embedding = speaker_encoder(preprocessed) return embedding
NeRF-based avatar rendering with audio-driven animation
class NeRFAvatar: def __init__(self, model_path): self.model = load_nerf_model(model_path) self.animator = VisemeAnimator() def generate_frame(self, audio_frame, expression): # Extract viseme parameters from audio visemes = self.animator.get_visemes(audio_frame) # Combine with emotional expression params = combine_parameters(visemes, expression) # Render NeRF frame frame = self.model.render(params) return frame def generate_video(self, audio_frames, expressions): frames = [] for i in range(len(audio_frames)): frame = self.generate_frame(audio_frames[i], expressions[i]) frames.append(frame) return encode_video(frames)
Real-time monitoring and configuration of AI models
{ "base_model": "mistralai/Mistral-7B", "lora_rank": 16, "temperature": 0.7, "top_p": 0.9, "training_data": "12,584 messages", "last_trained": "2025-08-14 03:45:21" }
POST /v1/tts Content-Type: application/json Authorization: Bearer <token> { "partner_id": "usr_abcd1234", "text": "Good morning! How did you sleep?", "style": "warm", "pitch": 0.2, "speed": 1.0 }
class ConsentManager: def __init__(self, db): self.db = db def check_consent(self, user_id, action): consent = self.db.get_consent(user_id) if action == "voice" and not consent.voice: raise ConsentError("Voice cloning not permitted") if action == "avatar" and not consent.avatar: raise ConsentError("Avatar generation not permitted") return True def update_consent(self, user_id, new_consent): # Validate consent structure validate_consent_schema(new_consent) # Update database self.db.update_consent(user_id, new_consent) # If voice consent revoked, delete voice model if "voice" in new_consent and not new_consent.voice: delete_voice_model(user_id) # Log consent change audit_log(user_id, "consent_update", new_consent)
See how our ethical AI companionship can strengthen your relationship